

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2		Oct	ober/November 2010
			1 hour 15 minutes
Candidates and	swer on the Question Paper.		
No Additional N	Materials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

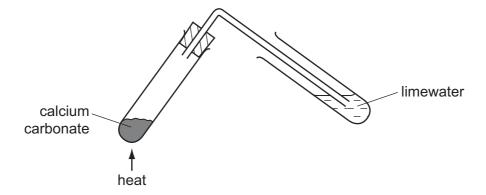
A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use				
1					
2					
3					
4					
5					
6					
7					
8					
Total					

This document consists of 17 printed pages and 3 blank pages.


1	The diagram	below sh	ows the el	lements in a	period of	the Periodic	Table.
	The diagram	DCIOW OII		cilicitto ili a	portion of	tile i ciledio	iabic.

Li	Be	В	С	N	0	F	Ne
----	----	---	---	---	---	---	----

(a)	То	which period	of the Periodic	Table do these ele	ments belonç	g?		
								[1]
(b)		•	•	only the elements s e, more than once		diagram		
	Wri	te down the s	symbol for the e	lement which				
	(i)	has six elect	trons in its oute	r shell.				
	(ii)	is a halogen						
	(iii)	is a metal w	hich reacts rapi	dly with cold water	·.			
	(iv)	has two forn	ns, graphite and	d diamond.				
	(v)	is in Group I	I of the Periodic	c Table.				
	(vi)	makes up al	bout 80 % of the	e air.				[6]
(c)	Cor	mplete the fol	lowing sentenc	e using words fron	n the list belo	W.		
	а	itoms	electrons	molecules	neutrons	3	protons	
	The)	of the	elements in the P	eriodic Table	are arra	anged in order	of
	incr	easing numb	er of					[2]
							[Total:	9]

[1]

2 Calcium carbonate was heated strongly in a test-tube. The gas given off was bubbled through limewater.

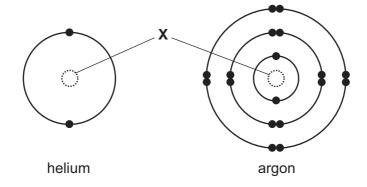
(a) What type of chemical reaction occurs when calcium carbonate is heated strongly?Put a ring around the correct answer.

hydration

neutralisation

oxidation

thermal decomposition


(iii)	Give one other use of calcium oxide.	For Examiner's Use
	[1]	
(iv)	Complete the symbol equation for the reaction of calcium oxide with hydrochloric acid.	
	CaO +HC $l \rightarrow CaCl_2 +$ [2]	
(v)	State the chemical name of the compound ${\rm CaC}l_2$.	
	[1]	
	[Total: 10]	

3	Helium	and	argon	are	noble	gases.
---	--------	-----	-------	-----	-------	--------

(a) State one	use of	helium
---------------	--------	--------

(b) The atomic structures of helium and argon are shown below.

(i)	State the	name of the	central	part of the	atom,	labelled	X
` '							

[1]

(ii) Which statement about helium and argon is correct?

Tick one box.

Argon has an incomplete inner shell of electrons.	

An atom of argon has 16 electrons.	
Helium has a complete outer shell of electrons.	

	ĺ
Helium has an incomplete outer shell of electrons.	
P	

(iii) How many protons are there in an atom of argon?

(iv) The symbol for a particular isotope of helium is written as ⁴₂He.

Write a similar symbol for the isotope of argon which has 16 neutrons.

[1]

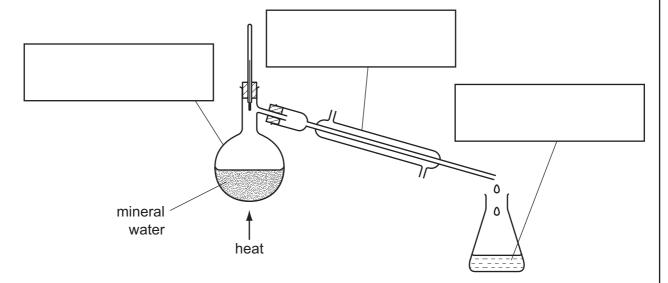
[1]

(c)	c) Argon is a liquid at a temperature of –188 °C. Complete the diagram below to show how the atoms of argon are arranged						
represents one atom of argon.							

[2]

For Examiner's Use

[Total: 7]


4 The table shows the mass of some ions present in a 500 cm³ bottle of mineral water.

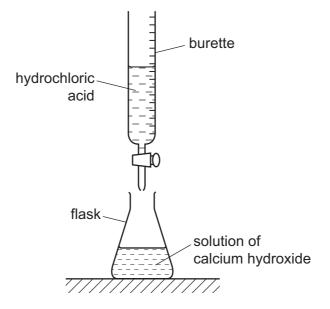
name of ion	symbol	mass of ion / mg
calcium	Ca ²⁺	40.5
	C1-	8.1
magnesium	Mg ²⁺	11.6
nitrate	NO ₃ -	2.4
potassium	K⁺	0.9
	SO ₄ ²⁻	6.4

(a)	Sta	te the name of the following ions.	
	Cl-		
	SO	2-	[2]
(b)	Cal	culate the mass of magnesium ions in 100 cm ³ of this mineral water.	
			[1]
(c)	(i)	Describe a test for nitrate ions.	
			[2]
	(ii)	The gas produced in this test turns damp red litmus paper blue.	
		State the name of this gas.	- 4-
			[1]

For Examiner's

(d) The apparatus shown is used to get pure water from impure mineral water.

(i) Complete the diagram by putting the correct labels in the three boxes. [3]
 (ii) Describe how this apparatus separates pure water from dissolved ionic solids.
 [2]
 (iii) Water purity is important in everyday life.
 Describe one other area of everyday life where purity of substances is important.

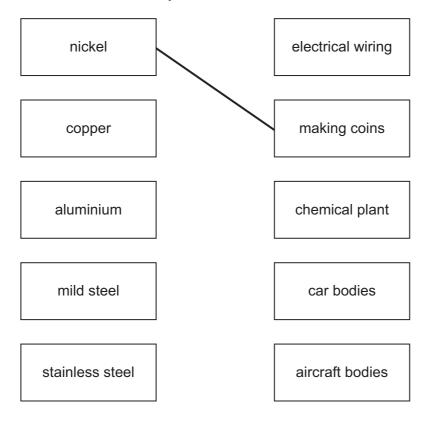

[Total: 12]

As	olutio	on of calcium I	nydroxide in water i	s alkaline.		
(a)			pH values below is the correct answer			
		pH 3	рН 6	pH 7	pH 11	[1]
(b)		ich of the follo	wing is the commo	n name for cal	cium hydroxide?	
			cement			
			limestone			
			quicklime			
			slaked lim	e 🗍		
						[1]
(c)	Sor	me farmers us	e calcium hydroxide	e to control soi	I acidity.	
	(i)	Why is it imp	ortant to control soi	I acidity?		
						[1]
	(ii)		cause soil to beco			
						[3]
(d)	Cal	cium hydroxid	e reacts with hydro	chloric acid.		
		calcium hydr	oxide + hydrochlo	ric acid $ ightarrow$ ca	lcium chloride + water	
	(i)	State the nar	ne of this type of ch	emical reactio	n.	
						[1]

5

(ii) A dilute solution of calcium hydroxide can be titrated with hydrochloric acid using the apparatus shown.

For Examiner's Use


Describe how you would carry out this titration.	
	•••
	•••
	3]

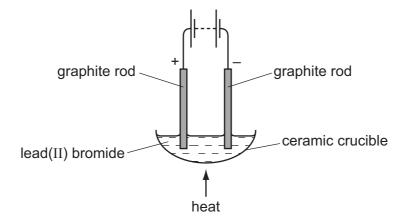
[Total: 10]

6		is e troly		e by reduction with carbon. Aluminium is extracted from its ore by
	(a)	(i)	State the name of	an ore of aluminium.
		(ii)		rstand by the term reduction?
	((iii)	Suggest why alum	inium is not extracted from its ore by reduction with carbon.
				[1]
	(b)		table gives informa carbon.	ation about the reduction of four different metal oxides by heating
			metal oxide	reduction conditions
			lead(II) oxide	reduced very easily using a Bunsen burner
		n	nagnesium oxide	reduced with difficulty in a furnace above 2000 °C
			nickel(II) oxide	reduced very easily in a furnace above 680 °C
			zinc oxide	reduced fairly easily in a furnace above 1200 °C
	lea		e the information in teactive	the table to suggest the order of reactivity of these metals. most reactive
				[2]
	(c)	The	c powder reacts with speed of reaction duced per minute.	
		Wha	at happens to the vo	olume of gas produced per minute when
		(i)	large lumps of zinc	are used instead of zinc powder?
				[1]
		(ii)	the reaction is carr	ied out at a higher temperature?
				[1]

(d) Match the metals on the left with their uses on the right. The first one has been done for you.

For Examiner's Use

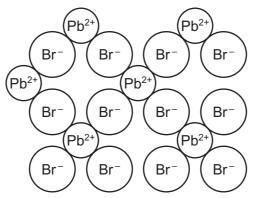
[4]


[Total: 11]

7 [Ethene, C ₂ H ₄ , is manufactured by cracking petroleum fractions.									
((a)	(i)	What do you understand by the term <i>petroleum fraction</i> ?							
			[1]							
		(ii)	Complete the equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$.							
			$C_{12}H_{26} \rightarrow C_2H_4 + \dots$ [1]							
((b)		o fractions obtained from the distillation of petroleum are refinery gas and gasoline. te one use of each of these fractions.							
		refi	nery gas							
		gas	oline [2]							
((c)		ene is an unsaturated hydrocarbon. at do you understand by the following terms?							
		uns	aturated							
		hyd	rocarbon[2]							
((d)	Eth	ene is used to make ethanol.							
		(i)	Which of these reactions is used to make ethanol from ethene? Tick one box.							
			catalytic addition of steam							
			fermentation							
			oxidation using oxygen							
			reduction using hydrogen							
			[1]							

For Examiner's Use

	(ii)	Draw tl	he structu	re of ethan	ol showing	all atom	s and bonds		
									101
									[2]
(e)	Cor	nplete tl			nene). es about thi	is reaction	on.		
2		ions	carbohy		catalysts	n	nonomers	polymers	
а					-			-	
	The	etnene	molecule	s wnich joi	n to form po	oly(etne	ne) are the		
	The	e poly(et	hene) mo	lecules for	med are				[2]
								[Total	: 11]


8 Lead(II) bromide can be electrolysed using the apparatus shown below.

(a) Choose **one** word from the list below which describes the graphite rods. Put a ring around the correct answer.

	cations	electrodes	electrons	insulato	rs metals	[1]
(b)	State the na	me of the products	s formed during	this electroly	sis at	
	the negative	graphite rod				
	the positive	graphite rod				[2]
(c)	Which of the	e following conduct xes.	t electricity?			
		cerai	mic crucible			
		grap	hite rod			
		molte	en lead(II) bromi	de		
		solid	lead(II) bromide			[0]
						[2]

(d) The structure of lead(II) bromide is shown below.

	Write the simplest formula for lead(II) bromide.							
		[1	1]					
(e)		$\operatorname{Id}(\operatorname{II})$ bromide is formed as a precipitate when aqueous solutions of lead(II) nitrate potassium bromide are mixed.						
	(i)	What do you understand by the term precipitate?						
		[1	1]					
	(ii)	The formula of lead(II) nitrate is $Pb(NO_3)_2$. State the number of different types of atom present in this formula.						
		[1	1]					
	(iii)	State the total number of oxygen atoms present in this formula.						
		[1	1]					
	(iv)	Lead compounds are pollutants in the air. State one harmful effect of lead compounds on health.						
			1]					
		[Total: 10)]					

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10	Argon 18	84 Kr		Rn Radon 86	_	175 Lu um Lutetium	
	=		19 Fluorine	35.5 C1 Chlorine					Yb Ytterbium	o N
	>		16 Oxygen	32 S Suffur	79 Selenium 34	128 Te Tellunum	Po Polonium 84		169 Tm Thulium	Ma
	>		14 N itrogen 7	31 Phosphorus 15	AS Arsenic	122 Sb Antimony 51			167 Er Erbium 68	Fm
	≥		12 Carbon	28 Si Silicon	73 Ge Germanium 32	S In	207 Pb Lead		165 Ho Holmium 67	
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium	115 In Indium 49	204 T t Thallium 81		162 Dy Dysprosium 66	Č
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	番
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	
Ģ					Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	
		Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	S
					Mn Aanganese	Tc Tc	186 Re Rhenium 75		Neodymium 60	238 U
					Cr Chromium 24	Molybdenum 43	184 W Tungsten 74		Pr Praseodymium 59	Ба
					51 V Vanadium 23		181 Ta Tantalum 73		140 Ce Cerium	232 Th
					48 T Titanium	91 Zr Zirconium 40	178 Hf Hafnium 72			iic mass ool
					Scandium	89 ×	La Lanthanum 57 *	Ac Actinium 189	l series eries	a = relative atomic massX = atomic symbol
	=		Beryllium	24 Mg Magnesium	40 Ca Cakium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	е ×
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	58-71 L _i 90-103 ,	Ke V

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.